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The synthesis of a new family of nitrogen- and oxygen-con-
taining macrocycles, which employs palladium-catalyzed ami-
nation of 3,5-dihalopyridines, is described. Synthetic approaches
to cyclodimers have been elaborated via bis(pyridyl)substituted
polyamines and bis(polyamino) substituted pyridines.

Catalytic amination of 3-halopyridines attracts researchers’
attention since 1996 when Buchwald was the first to obtain 3-
aminopyridines via catalytic process using his famous Pd(dba)2/
BINAP system.1 This work was followed by the investigations
of 3-bromopyridine amination in which ligands other than
BINAP were tried: PPFOMe,2 t-Bu3P,

3 or dppf.4 3-Chloropyri-
dine proved to be substantially less reactive than 2-chloropyri-
dine,5,6 while 2-chloro-3-iodopyridine was efficiently aminated
giving 2-chloro-3-aminopyridines as has been shown in the re-
cent reports.7–9 Nickel-catalyzed reactions turned to be efficient
for 3-chloropyridine amination,10 and the possibility of the
synthesis of 3,5-diaminosubstituted pyridine was reported by
Fort. Recently we have proposed a simple one-pot approach to
polyazamacrocycles derived from 2,6-dibromopyridine using
palladium-mediated amination with linear polyamines.11 Such
macrocycles possess highly nucleophilic pyridine nitrogen atom
in an endo-position as regards macrocycle’s cavity.

Here we report the synthesis of isomeric polyazamacrocy-
cles based on 3,5-diaminosubstituted pyridine, with an exo-ori-
ented pyridine nitrogen atom. These isomeric macrocycles might
possess different complexing properties due to spatially isolated
donor sites: sp2-N of the pyridine ring and secondary amino
groups of the polyamine chain. First we explored the possibili-
ties of 3,5-dibromopyridine 1a to form polyazamacrocycles
upon reacting with linear triamines 2a and 2b, tetraamines 2c–
2f, pentaamine 2g, hexaamine 2h, dioxadiamine 2i, and trioxadi-
amine 2j (Scheme 1).

The reactions were run in diluted solutions of boiling
dioxane (c ¼ 0:02M) to favour intramolecular cyclization,
Pd(dba)2 (8mol%) and BINAP (9mol%) were used in all cases,
t-BuONa (3 equiv.) was used as a base.12 The reaction time was
4–6 h to ensure full consumption of starting dibromopyridine.
When using less amount of the catalyst (6mol%), longer heating
(10 h) was necessary to obtain a standard yield. The data are
collected in the Table 1.

The yields of corresponding macrocycles 3a–3j ranged from
5 to 42%, and were essentially dependent on the nature of start-
ing polyamines 2. It is clearly seen that the yield generally is not
only a function of polyamine’s length but also depends on C to N
atoms ratio. Indeed, whereas amines 2b, 2d–2f, 2i, and 2j pro-

vided 18–42% yields (Table 1, Entries 2, 4–8, 11, and 12),
amines 2a, 2c, 2g, and 2h, which can be genaralized as polyethyl-
ene-polyamines, gave tiny 5–6% yields (Entries 1, 3, 9, and 10).

We have tried 3,5-dichloropyridine 1b in the reaction with
2e (Scheme 2). To provide a better yield of desired macrocycle
3e prolonged heating (69 h) was necessary, and even in this case
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f: H2N(CH2)3NH(CH2)3NH(CH2)3NH2
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Scheme 1.

Table 1. Synthesis of macrocycles 3a–3j

Entry Polyamine Reaction time/h Yield of 3a

1 2a 5 5(3)
2 2b 5.5 42(33)
3 2c 4 5(3)
4 2d 6 29(17)
5 2e 6 36(16)b

6 2e 4 19(17)
7 2e 10c 30(17)
8 2f 5 18(15)
9 2g 4.5 6(5)

10 2h 4.5 5(4)
11 2i 6 —d(27)
12 2j 5.5 22(20)

aNMR yields, yields after chromatography are given in
brackets. bYield after treatment with CH2Cl2/H2O
before chromatography. cWith 6mol% Pd(dba)2/6.5mol%
BINAP. dNo data available for the reaction yield.
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the yield was substantially poorer (17% instead of 36%).
Cyclodimers of type 6 are of special interest due to their

large cavities and greater number of donor nitrogen atoms, in-
cluding two exo-pyridine nitrogens. For this reason we attempted
to elaborate synthetic routes to this type of macrocycles trying
two ways: (a) the synthesis of dipyridyl substituted tetraamines
7e and 7j and its cyclization into 6e and 6j using second equiv-

alent of 2e and 2j; (b) the formation in situ of bis(polyamino)
substituted tetraamine 8e followed by its reaction with 1a
(Scheme 3).

Method (a) provided 14% yield of the target molecule 6e
(15% for 6j), whereas method (b) afforded 12% yield. Both
schemes gave rise also to linear oligomers.

In conclusion, we have proposed a simple one-pot catalytic
method of the synthesis of a new type of pyridine-containing
macrocycles with an exo-oriented pyridine nitrogen atom, we
have also shown the possibility of the synthesis of cyclodimers
which possess a greater cavity.

This work was supported by RFBR grants N 02-03-33331,
03-03-22001, and 03-03-32627 and PICS grant N 2105.
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